Seismic damage criteria for a steel liquid storage tank shell and its interaction with demanded construction material
Abstract
In this paper, the relation between the steel cylindrical tank geometry and the governing critical damage mode of the tank shell is numerically determined for all practical ranges of liquid storage tanks (aspect ratio H/D = 0.2 to 2). In addition, the interaction between the seismic intensity, soil type, acceptable seismic risk and tank geometry along with the extra material demanded by the seismic loads is examined based on the provisions of major codes. The importance of seismic factors on the economics of the design of a liquid tank in zones with high seismic activity is comprehensively discussed. In this regard, an empirical relation to estimate the steel volume required for specific seismic conditions and tank geometries is proposed based on the results of analysis.